Chronic bisphenol A exposure triggers visual perception dysfunction through impoverished neuronal coding ability in the primary visual cortex.

G

greenmedinfo

Guest
PMID: Arch Toxicol. 2021 Nov 16. Epub 2021 Nov 16. PMID: 34783864 Abstract Title: Chronic bisphenol A exposure triggers visual perception dysfunction through impoverished neuronal coding ability in the primary visual cortex. Abstract: Contrast perception is a fundamental visual ability that allows us to distinguish objects from the background. However, whether it is perturbed by chronic exposure to environmental xenoestrogen, bisphenol A (BPA), is still elusive. Here, we used adult cats to explore BPA-induced changes in contrast sensitivity (CS) and its underlying neuronal coding mechanism. Behavioral results showed that 14 days of BPA exposure (0.4 mg/kg/day) was sufficient to induce CS declines at the tested spatial frequencies (0.05-2 cycles/deg) in all four cats. Furthermore, based on multi-channel electrophysiological recording and interneuronal correlation analysis, we found that the BPA-exposed cats exhibitedan obvious up-regulation in noise correlation in the primary visual cortex (area 17, A17), thus providing a population neuronal coding basis for their perceptual dysfunction. Moreover, single neuron responses in A17 of BPA-exposed cats revealed a slight but marked decrease in CS compared to that ofcontrol cats. Additionally, these neuronal responses presented an overt decrease in signal-to-noise ratio, accompanied by increased trial-to-trial response variability (i.e., noise). To some extent, these neuron population and unit dysfunctions in A17 of BPA-exposed cats were attributable to decreased response activity of fast-spiking neurons. Together, our findings demonstrate that chronic BPA exposure restricts contrast perception, in response to impoverished neuronal coding ability in A17.
read more