Honokiol could alleviate lipopolysaccharide-induced acute lung injury by reducing the oxidative stress and inhibiting NLRP3 inflammasome.



PMID: Chin Med. 2021 Nov 29 ;16(1):127. Epub 2021 Nov 29. PMID: 34844623 Abstract Title: Honokiol alleviates LPS-induced acute lung injury by inhibiting NLRP3 inflammasome-mediated pyroptosis via Nrf2 activation in vitro and in vivo. Abstract: BACKGROUND: Honokiol (HKL) has been reported to ameliorate lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, its potential mechanism of its protective effects remains unclear. In this study, the protective mechanism of HKL on LPS-induced ALI was explored in vivo and in vitro.METHODS: In vivo, the SD rats were intratracheally instilled with LPS (5 mg/kg) to establish an acute lung injury model and then treated with HKL (1.25/2.5/5 mg/kg) or ML385 (30 mg/kg) intraperitoneally. In vitro, the human bronchial epithelial cell line (BEAS-2B) was stimulated with LPS and ATP to induce pyroptosis and treated with HKL (12.5/25/50 μM). Small interfering RNA (siRNA) technique was used to knockdown Nrf2 in BEAS-2B cells. The protein and mRNA expression levels of Nrf2, HO-1, NLRP3, ASC, CASP1, and GSDMD in cells and lung tissues were detected by western blot and real time-PCR. The expression levels of interleukin (IL)-1β, IL-18, MPO, MDA, andSOD in bronchoalveolar lavage fluid (BALF) and supernatant were determined by ELISA. The degree of pathological injury of lung tissue was evaluated by H&E staining.RESULTS: The results showed that HKL could alleviate oxidative stress and inflammatory responses by regulating the levels of MPO, MDA, SOD, IL-1β, IL-18 in supernatant. And it could also inhibit the expression levels of NLRP3, ASC, CASP1, GSDMD via activation of Nrf2 in BEAS-2B cells. Further studies revealed that HKL could attenuate the pathological injury in LPS-induced ALI rats, and the molecular mechanism was consistent with the results in vitro.CONCLUSIONS: Our study demonstrated that HKL could alleviate LPS-induced ALI by reducing the oxidative stress and inhibiting NLRP3 inflammasome-mediated pyroptosis, which was partly dependent on the Nrf2 activation.
read more